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Abstract 

A simple model of heat transfer within a dynamic calorimeter is introduced. On the 
basis of this model the measured signal of a known thermal event in the sample can be 
calculated. For this result a method is developed to estimate the true transition 
temperature and enthalpy from only one heating run. The method is valid on melting 
peaks with and without a stepwise change of heat capacity. The new method has been 
experimentally verified for different pure substances. This method can be used as a simple 
and fast calibration check for a differential scanning calorimeter. 

INTRODUCTION 

Information about the thermal behaviour of substances can be obtained 
in dynamic calorimetry by analysis of reaction peaks. According to the type 
of thermal event, different quantities are of interest, such as the beginning 
of transition (onset temperature), the end of transition (offset tempera- 
ture), the heat of fusion (peak area), or the peak form (purity, turnover 
etc.). In the literature several methods for the estimation of these values 
have been suggested [l-5]. These methods often need large experimental 
expense or do not take the dynamic processes into consideration suf- 
ficiently. 

Dynamic processes are caused by thermal relaxation. This leads to 
significant differences between the signal of the physical or chemical heat 
production in the sample and the measured signal. The time consuming 
heat transfer, both in the measuring instrument and the sample, is the 
reason for this “smearing” of the measured signal. The measured 
temperature is thus shifted and the shape of the curve is changed. 
Mathematical methods of linear response theory are recommended to 
desmear the measured curves [6]. Use of this method requires linearity and 
time invariance of the system (sample and measuring instrument). In 
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addition the dynamic behaviour (in the form of a Green’s function) of the 
system must be known [7]. 

Heat conduction is given by a linear differential equation (if (Y is 
constant) 

a2T(r, t) aT 

a? 
=(y- 

at 

with CY = (pc,)/h, (p is the density, cP the specific heat capacity, and A the 
thermal conductivity. If the thermal properties of the sample change during 
the measurement, (Y is not a constant factor and eqn. (1) is nonlinear [8]; in 
that case linear response theory is only an approximation. Additional non 
linearities appear on changes of the symmetry in the DSC twin arrangement 
during transitions in the sample [9, lo]. It is proved experimentally that, in 
the case of thermal events with only small changes of sample properties, the 
linear response theory is practicable within the limits of measuring accuracy 

[W 
If we have a thermal event that is coupled to a large change of heat flow 

in the sample (e.g. a melting peak), the effective heating rate of the sample 
is not equal to the programmed heating rate. This violates the time 
invariance principle. This effect must be considered at the interpretation of 
DSC curves [lo]. 

A method of analysis of smeared peaks without the preceding estimation 
of a Green’s function is introduced in this paper. This method, based on a 
simple model of heat transfer, is experimentally verified for first order 
phase transitions. 

THE MODEL 

Algebraic solutions are often preferred to numerical investigations to 
describe the behaviour of calorimeters and deduce evaluation methods. 
Relatively simple models are needed to be able to solve with meaningful 
effort the differential equations which arise. We use a one dimensional 
model of the differential scanning calorimeter furnace (Fig. 1). On the 
bottom it is heated with a constant heating rate. The necessary heat flow 
rate m,,,(t) corresponds to the measured signal. The sample is thought to be 
on the upper end of the heat conducting path. Adiabatic conditions are 
supposed on this side of the furnace-sample system. Important special 
cases of this model have previously been calculated [12]. 

If we change the temperature by a certain heating programme a heat flow 
rate a’, into the sample occurs which describes its behaviour. 

The coupling between sample and furnace is thought to be not ideal. The 
heat transfer is characterized by the heat transfer coefficient k,. The 
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Fig. 1. Simple model of the arrangement of DSC furnace and sample. 

thermal conductivity of the furnace is given by the heat transfer coefficient 

k, 

kf = --& mfcp,f 
f 

(2) 

where I is a dimension of the furnace, A is the effective cross section area, hf 
is the thermal conductivity coefficient of the furnace material, and m,, c,,, 
are the mass and specific heat capacity of furnace respectively. 

By analogy to ref. 12 the measured signal at given heat flux into the 
sample can be calculated as 

@,Jt) =E g (-1)“(2n + 1) /*e-~(‘P”r@S(t’) dt’ 
n 0 0 

with k = k, + k,. 
If the thickness of the sample is large in relation to its thermal 

conductivity, a relatively large temperature profile develops inside the 
sample. In the one dimensional approximation an isothermal melting front 
is produced in the sample during the melting process. This effect causes 
a curvature of the rising edge of the melting peak [12]. In this paper this 
effect is not considered; in our model the sample is thought to be infinitely 
thin. 

THE IDEAL MELTING PEAK 

In the case of linear heating (with heating rate p) of a sample with a heat 
capacity of C, = mc, a constant heat flow rate 

@ = mc,p (4) 
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Fig. 2. Ideal sample signal and real measured signal in the case of a first order transition in 
the sample. (a) Ideal infinite sample heat flow rate, (b) ideal but finite sample heat flow rate 
(c) real measured heat flow rate. 

arises. If at temperature TO a first order phase transition takes place in the 
sample, the total heat of fusion must be put into the sample during a 
infinitely small time interval. The required heat flux thus has the shape of a 
Dirac pulse (Fig. 2(a)). In reality the finite power of the heater and heat 
transfer conditions cause the heat flux into the sample to be limited as well. 
The sample temperature does not change until the melting process is 
completed. During that part of measurement the temperature gradient 
between furnace and sample changes linearly because the furnace is linearly 
heated and the sample temperature is constant. Hence we find a linear 
increase of heat flow rate into the sample until the end of transition. The 
theoretical curve of heat flow into the sample has the shape of a saw tooth 
triangle (Fig. 2(b)). 

Heat relaxation processes cause “smearing” effects, leading to a 
measured signal that is not in the form of an ideal triangle (Fig. 2(c)). 

The shape of the theoretical heat flow rate curve reads (Fig. 2(b)) 

(5) 

The slope a is given by the heat transfer conditions. The integral of the 
curve (and with it t, at given slope) is determined by the heat of fusion. 

The constant heat flow rate before and after transition due to the heat 
capacity of the sample (eqn. (4)) is neglected in eqn. (5). It arises only as an 
additive constant term in the following calculations. For the sake of 
simplicity t,, is set at zero. Inserting eqn. (5) into eqn. (3), the measured 
signal reads 
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Fig. 3. Schematic presentation of first order transition in the sample and calculated heat flow 
rate curve due to eqn. (6). 

(6) 

with X, = (2n + 1)‘7r2)/4k. The heat flow rate into the sample and the 
corresponding measured signal are shown in Fig. 3. 

From eqn. (6) we find the following. 

(i) In the region from to to t, the measured peak is described as a sum of 
three terms. The first term corresponds to the event in the sample, 
the other two describe the relaxation processes due to the switching- 
on. For small times the heat flow rate is zero, at larger times (but 
below t,) the slope of the measured peak is nearly the constant a. The 
second term of the equation describes the shift between t,, and the 
experimentally estimated onset temperature t,,,. 

(ii) In the region t > t, the “switch-off relaxation” is starting. This 
equation also consists of three terms. The third summand is very 
small. Both the other terms describe a maximum at a certain t > t,. 

In contrast the theoretical signal of the sample is completely charac- 
terized by the time to, the slope a and the area (heat of fusion Q&. 
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Therefore an evaluation method is necessary to obtain these values from 
the measured curve. Qfus (area) and a (slope) can be estimated relatively 
easily from the measured curve. The problem is the estimation of the true 
starting time to. 

As shown in eqn. (6) the input function @‘, drops by OSak (neglecting the 
relaxation). Extrapolation of the initial slope of the measured curve to a 
value O.&k above the baseline yields t,, (Fig. 3). Unfortunately k is not 
known, but from the law of conservation of energy, the triangle D’E’F’ 
must be congruent to the triangle DEF on the one hand and have the same 
area as the total peak of the smeared signal on the other. 

We are able to determine the unknown quantities k, t,, and t,, as follows. 
The areas in Fig. 3 are determined by 

A = We - to) (ton - to>a 
R 

2 - 2 (7) 

A, = 
I 

m Q,,,(t) dt 
fe 

Inserting eqn. (6) into eqn. (8) and integrating yields 

(8) 

A, = $ku(t, - t,,) -; k2u + $ k2u 2 (-1)” e-x.(r,-ro) 
n=O (2n + 5)s 

(9) 

with 

?0 [(-1)“/(2n + l)“] = $ and s0 [(-1)“/(2n + l)‘] = 5x5/1536. 

The small relaxation area A, at the beginning of the measured peak (Fig. 3) 
is 

A, = 
I 

le (D,,,(t) - (at - &ka))dt - @On ; to)u 
10 

Insertion of eqn. (6) and integration yields 

A3=;k2u -$k’u c (-1)” e_x”(te_ro) _ (ton - to)u 
n=O (2n + 5)5 2 

(10) 

(11) 

Comparing eqns. (7), (9) and (11) results in 

AR=A,+A, (12) 

From Fig. 3 we find the validity of 

4ku = (ton - t,)u (13) 

Paying attention to eqn. (13) and inserting eqn. (7) into eqn. (12) we obtain 

A&e) + A, = +,n - to)(te - to) - 4Ln - toI 
2 (14) 
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The area A3 between measured curve, baseline, and tangent of the peak can 
easily be determined from the measured curve. The same is also true for a 

and ton, whereas A2 depends on the unknown time t,. 
If we take t, as known, eqn. (14) can be solved for to. To simplify the 

equation, a transformation of the abscissa is carried out, so that zon = 0 

t; = to - t,, WQ 

and 

t; = t, - t, 

From eqn. (14) we obtain the quadratic equation 

A*(&.) + A3 = i ti: - at& 

the solution of which is 

W) 

t; =; t; _ 

J 

q + wwJ + A3) 

a (16) 

Now the probiem arises of how to estimate to and t,. The triangle GEF’ with 
area A, is given as 

(te - t,,)‘a 
A,=A-A,-A&)= 2 (17) 

with A being the total area of the melting peak. With the named timescale 
transformation (eqn. (15)), eqn (17) can be solved 

t, = (A - A3 - &(tdP 

e 

J a WV 

This equation makes an iterative solution possible. Taking the time at peak 
maximum as starting value, inserting eqn.* (18) into eqn. (16) yields 

(19) tt, =: t; - 

\i 
2A 
a 

We can determine to via eqns. (15) and (19). With 

T(t) = &art + Pt 

we obtain the transition temperature To. 

(20) 

To estimate to from measuring curves needs an estimation of slope a 
which is as accurate as possible. 

TRANSITIONS INCLUDING cp CHANGES 

In this section the influence of a cP change during a transition on the 
measured signal is investigated. 

This type of transition yields baseline changes which restrict the accurate 
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Fig. 4. Enthalpy change of a sample with first order transition and a cP stepwise change (Fig. 
5) depending on (a) time and (b) sample temperature. 

determination of both transition temperature and transition heat QfUS. A lot 
of effort has been made to find the “true” baseline in this case. A detailed 
comparison of different methods is given in ref. 13. From a physical point of 
view the determination of transition enthalpy from extrapolation of the 
enthalpy-temperature function [4] seems to be the best method. However 
problems occur in practice, because the differential scanning calorimeter 
measures heat flow rates, not as a function of temperature, but as a function 
of time, and the proportionality between time and sample temperature is 
destroyed if a transition occurs [lo]. In addition the true transition 
temperature is not identical with the onset temperature To,. 

Without restriction of generality, we shall only discuss the case of 
increasing heat capacity during transition. The enthalpy-time curve of this 
case is shown in Fig. 4 and the equivalent heat flow rate into the model 
sample is shown in Fig. 5. The cP value jumps at t, in this model, because 

AC-~ 

/ 

I’ _______________ 

t0 te 
time 

Fig. 5. Ideal heat flow rate into a sample with first order transition and stepwise change of 
heat capacity. 
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the enthalpy curve has the new slope starting at that point. By analogy to 
eqn. (5) the signal of sample reads 

if to S t < t, 

if t 2 t, 
(21) 

Insertion of eqn. (21) into eqn. (3) yields the measured signal 

I ar+ka+$ko c m ( - 1)” e_,“, 

n=fj (2n + 1)’ 
if to G t < t, 

Rl(t> = ( 

i 

-$ka 2 
(-1) 

.+(2n + 1)3 
e”““‘ec” 

> 

+$kai 
(-1)” e_x”, 

n=O (2n + 1)3 

if t 2 t, 

The corresponding curve is shown in Fig. 6. 
A comparison of eqns. (6) and (22) shows that in the region of thermal 

relaxation two more terms appear in the case of a step change of cP. These 
terms describe the curved baseline (HL in Fig. 6) at t > t,, whereas both 
curves are identical in the first part of the peak (to < t < t,) (straight line 
GH). The extrapolated straight line KL (up to te) can be determined 
relatively simply from the steady states before and after transition. If the 
heat of transition is determined from the area between the measured curve 

to ton te time 

Fig. 6. Schematic presentation of a first order transition with heat capacity change (eqn. 

(22)). 
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and these lines, an error is made. This error is equal to the area A,. 

(23) 

Integration yields 

A, = 1 km AC,@ (24) 

It can be seen that A, is determined by the change of the heat capacity of 
the sample, and heat transport process. A step change in the sample signal 
at t, appears in addition to the melting peak. The last two terms in eqn. (22) 
describe this step. 

If at the beginning of the scanning run the heating rate is switched on or 
at the end of the measurement the heating rate is switched off, a smilar step 
in the measured signal arises. Between these switchings, the heat capacity 
of the sample has changed by AC,. The corresponding curves are shown in 
Fig. 7. The shape of the curves can be calculated by insertion of 

Q,,,(t) = me,,, P W - tbegin) 

or 

@s,o&) = mqd (1 - @(t - Li)) 

into eqn. (3). c~,~ and cP,z are the specific heat capacities before and after the 
transition, respectively, t&gin and teend are the times of switching on or off of 
heating rate and @(t - t’) is the “step function” The measured signal in the 
switching-on region reads 

(2-w 

time time 

Fig. 7. Relaxation behaviour on switching on and off the heating rate, of a sample with cP 
change. 
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and in the switching-off region 

(2W 

From eqn. (25) the corresponding relaxation areas are 

A, = - fkmc,,,~ (269 

or 

Aon = #mcp,2P VW 

A comparison of eqns. (24) and (26) yields an approximation of A, from 
the areas of relaxation at switching-on and -off, for example 

A, = A,, + A,B (27) 

We have to emphasize that the formation of the temperature profile inside 
the furnace is not considered in eqn. (25). However we can show that within 
the limits of this model the corresponding part of the signal vanishes if we 
subtract the empty pan baseline 1141. Nevertheless the heat transfer 
conditions should be kept constant in the sample run and also the baseline 
run [15], and care should be taken to ensure symmetric conditions [9, lo]. 

If we determine the peak area A between the measured curve and the 
extrapolated straight line (KL in Fig. 6) we obtain 

A =A1 +A,+A, w9 

and times t, and t,, can also be determined from eqns. (18) and (19). The 
heat of fusion is then 

Q,us=A +A, (2% 

Thus the relevant peak quantities can be determined accurately without any 
“baseline construction”, as is also the case for transitions with c,, change. 

MEASURING RESULTS 

The difference between T,, and & is caused by smearing of the measured 
curves by reason of heat transfer. Equation (6) shows that the difference 
between t,, and to is proportional to k and thus depends on the heating rate. 
If eqn. (20) describes the connection between times and temperatures, the 
difference T, - To depends linearly on heating rate j3. This difference 
vanishes if the heating rate is zero. The onset temperature at heating rate 
zero can be estimated by means of extrapolation of the onset temperature 
measured at different heating rates. This method is used for temperature 
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calibration of a differential scanning calorimeter [l]. If our model presented 
above is correct, the onset temperature, extrapolated to heating rate zero, 
should coincide with the temperature To computed according to eqn. (19). 

In order to experimentally verify the results from our model, the 
measured samples should have a good purity, to guarantee sharp melting 
peaks. Gallium, indium and tin were used for test measurements. The 
measuring instrument was Perkin-Elmer DSC-II modernized with regard to 
electronics and computer control. The new design allows any given 
scanning rate at better signal-to-noise ratio. The sampling rate can be 
chosen up to 15 values per second [16]. The large sampling rate reduces the 
numerical error of the peak area estimation at fast scanning rates. 

The above named metallic samples were measured at heating rates 
between 0.5 and 10 K min-‘. On the one hand the onset temperatures were 
determined and on the other hand & was calculated according to eqn. (19). 
The results are shown in Figs. 8-10. The sample masses in question are 
mentioned in the legends. 

As can be seen, all values of To correspond to the extrapolated onset 
temperature at heating rate zero T,,. The deviations of To are less than 
kO.1 K min-‘. This is in the same range as the error of T,, [17]. 

In Fig. 8 another value of To, is added, which originates from a first run 
measurement (at 10 K min’). (All other results are from at least second 
run measurements.) This single value is larger than the others (at the same 
heating rate) because the heat contact between sample and pan is relatively 
poor at the beginning. In this special case k (in eqn. (6)) is larger than in all 
other measurements. However To determined by our method from this first 
run measurement is in excellent agreement with the second run values. 

431.0 

o+ In 1.21mg 

XA In 550mg 1st run 

430.5 

Y 

+ 

430.0 

2 4 6 8 10 

p I K minm’ 

Fig. 8. Dependence of the onset temperature of indium (+, A) on heating rate, together 
with transition temperature (0, X) according to eqn. (19). 
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Fig. 9. Dependence of the onset temperature (X) of gallium on heating rate together with 
transition temperature (0) according to eqn. (19). 

One of the tin samples, having a mass of 3.82 mg, did not fuse 
homogeneously. An isothermal fusion front inside the sample developed. 
This yielded an expected curvature in the peak slope. In this case the 
relaxation area A, is distinctly too large in the numerical analysis. As a 
consequence the T, values are too small (Fig. 10). This was to be expected 
because the model calculation presumes a homogeneously melting sample. 
We can see in the same figure that correct To values are estimated if we use 
small sample masses. 

506.0 , 

504.5 

1 

0 
0 

! ,,.,, (. ( , , , , 

2 4 6 6 10 

fj I K min.’ 

Fig. 10 Dependence of the onset temperature (A, 0.54 mg; +, 3.82 mg) of tin on heating rate 
together with transition temperature (0, 0.54 mg; 0, 3.82 mg) according to eqn. (19). 
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Fig. 11. Dependence of the onset temperature (X) of water on heating rate together with 
transition temperature (0) according to eqn. (19). 

To prove this model of peak analysis in the case of a sample with cp step 
change during a transition we measured the melting of water. The results at 
different heating rates are shown in Fig. 11. The outcome is, in the main, the 
same as from the metal measurements, but the scatter of To is somewhat 
larger. When measuring water, one has to take care that no water 
condensate collects on the inner side of the lid of the pan, otherwise the 
peak will become broader because of the temperature difference between 
bottom and lid. This effect presupposes a larger relaxation region of the 
peak than should occur in reality. 

The heats of fusion determined according to eqns. (28) or (29) are 
presented in Fig. 12. For comparison, QfUS was also determined in the 
common way, using a straight line as baseline. As can be seen, this method 
yields heats of fusion which increase with the heating rate. If we determine 
the peak area with the aid of eqn. (28) (neglecting A,) the values decrease 
with heating rate, but to a minor extent. If we include the corrections 
having regard to the switch-on and switch-off areas (eqn. (29)), we obtain a 
heat of fusion without any dependence on heating rates. The accuracy of 
the numerical evaluation of r, from measuring peaks with our method 
depends on the sampling rate of the heat flow rate. In the case of too few 
measured points in the region of the peak maximum the determination oft, 
can be erroneous, in particular for measurements with large heating rate. 
At a heating rate of 10 K min-’ the sampling rate should be at least 4 per 
second (depending on sample mass and specific heat of fusion in question). 
Preliminary investigations on this problem showed that the value of the 
temperature To determined is too small when the sampling rate is too low 

[W 
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1 5 10 40 
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Fig. 12. Specific melting heat of ice as a function of heating rate determined with different 
methods (x, with straight baseline; +, from areas A, + A, + A, (Fig. 6) without A,; A, from 
eqn. (29). 

CONCLUSIONS 

The result from calculations using an easy model yield a method for 
determining the temperature and heat of fusion from the measured peaks. 
The method is based on an easy iterative comparison of partial areas 
leading to the starting temperature and the peak relaxation area. From this 
data the true transition temperature, which is lower than the extrapolated 
onset temperature, can be determined. 

Experimental verification yields a good correspondence between transi- 
tion temperatures determined by our new method and those determined by 
extrapolation of the onset temperature from different heating rates to 
heating rate zero. Furthermore, additional smearing effects due to bad 
contact between sample and pan have no influence on transition tempera- 
ture; thus in our case, the results from the first run do not differ from the 
others. 

If the transition includes a stepwise change of the heat capacity, the heat 
of transition can be determined without construction of a non-linear 
baseline if we have knowledge of the relaxation behaviour of the heat flow 
on switching the heating rate on and off. 

These results show that it is possible to correct the influences of dynamic 
processes of the calorimeter within the limits of our model. 

The procedure presented can be used for quick temperature calibration 
of the differential scanning calorimeter as only one measurement is needed 
for determination of the true (unsmeared) transition temperature. 
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